E

A. Buchmann Q. Glinther
LR. Smith Y.-FE Wang (Eds.)

Design and Implementation
of Large Spatial Databases

First Symbosium SSD '89
Santa Barbara, California, July 1989
Proceedings B

T
b

| . } SpringerVerlag

The Fieldtree: A Data Structure for

Geographic Information Systems*

Andrew U. Frank
Renato Barrera
National Center for Geographic Information and Analysis
and
Department of Surveying Engineering
University of Maine
Orone, ME 04469, USA
FRANK@MECAN1 . bitnet
RENATO@GMECAN1 bitnet

Abstract

Efficient access methods, such as indices, are indispensable for the quick answer 10 database queries,
tn spatial databases the selection of an appropriate access method is particularly critical since diflferent
types of queries pose distinct requirements and no known data structure outperforms all others for
all types of queries. Thus, spatial access methods musi be designed for excelling in 2 panicular kind
of inquiry while perfarming reasonably in 1he other ones. This arlicle describes the Fieldiree. a data
structure that provides one of such access metheds. The Fieldtree has been designed for GIS and
stmilar applications, where range queries are predominant and spaiial nesting and averlaping of objects
are cammon. Besides their hierarchical organization of space, Fieldirees are characterized by three other
features: (i) they subdivide space regularly. (i) spatial objects are never fragmented, and (iii) semantic
information can be used 1o assign the location of a cerlain object in the tree. Besides describing
the Fieldtree this work presents analytical results on several implementations of those variants, and

compares them to published results on the Ftree and the [#*iree.

1 Introduction

Spatial databases deal with the description of the geometsy and other attributes of objecis in space
Present technology provides a persistent slorage media {hard disk) with a finear address space, parti-

tioned into pages. We will call nrigiunl space 1o the one that contains the locus of the spatial entilies

“This rescarch was partizlly lunded by gianls from NSF under No. IST B4-09123 and Digital Equipment Corporation
(Princigal Investigator: Andizw Ul Frank} The supaart figm NSF for Lhe NCGIA under grant number SES BA-10917 is
gralefully acknowledged

30

The purpose of spatial access methods is 1o provide a mapping from regions in original space to sets af
pages in disk space. To be efficient, that mapping should have two characteristics: {i) use disk space
efficiently and (i} require the least possible amount of disk accesses.

Spatial databases afre used in several fields: CAD-CAM, GIS, VLS| design, image processing. etc.
Spatial access methods are also used in non-spatial databases for the implementalion of rnu!likey_indices,
of joins in relational databases [Kitsuregawa 1689], etc.

This paper is organized as follows: The next section presents several existing spatial access methods
that provide a foundation far section 3. in which the Fieldtree is described. Section 4 presenls two
implementations of the Fieldtree and the following section discusses the operations upon the trees.
Section B presents analytical results for different implementations of the Fieldtree, and finally, we

conclude with some camments.

2 Access Methods for Spatial Objects

A spatial access method should provide 3 mapping from a (mullidimensional) ortginal space to i
(unidimensional) disk space. Ideally this mapping should preserve vicinities. i.e.. should map neighborin|
objects in original space into neighboring disk pages. This is unforiunately impossible, since any bijectiv
mapping irom the a4 plane to a hoe is discontlinuous.

There are mappings, such as Morton keys [Samet 1984] or z-order [Orensiein 1980], that preserv
some vicinities. The selection of an adequate mapping is complicated further by the {act that page
can hold a limited amount data: if the capacity of one of them is exhausted. a mechanism {such ¢
splitting or chaining) for passing data to other pages should be provided. thus interfering with the desi
of preserving vicinity relationships. Moreover, a good spatial access method ought to take into accout
the dynamic characteristics of data. '

This section will deal with the types of spatial queries, with a method to simplify the solution -

those inguities. and with a taxonamy of spatial access methads.

2.1 Types of Spatial Queries

General-purpose DBMS's usually provide two types of access methods: the priunry one that feic
a record when given a unique identifier, and the secondary anes, retrieving sets of records that ok
a specific predicate. The methods that provide the fastest primary access are ill-suited for second:
access: secondary access methods are nat efficient enough for primary access.

In a similac fashion, spatial queries can be divided into two categories: (i} paint queries, that rett
objects cantaining that point, and (i) range queries that deal with objects fulfilling a given relations
with respect to a window W in original space. That retationship can be one of: (i} intersection -
objects with points in common with W), (i} inclusion {all objects that contain W, (i) cantainm
{all objects wholly inside W).

In agreement with the actess methods used in geaeral-purpose DBMS's. no known spatial ace
method performs optimally for all applications. Hence, we conclude that they should be designed foi
outstanding performance under the most frequent conditians and a reasonably good one during the
of the time. This implies that spatial access methods should be sefected depending on the applica
asea and that a spatial DBMS may provide more than one.

31

2.2 Simplilying the Description of Shape

Geamettic information can be decomposed into two constituents: (i) position and (it) shape. ILis
straightforward ta include position into an indexing schema, but the expenses involved in utilizing a
thosough desceiption of the shape outweigh the advantages,

Thus, the simplification of the shape of an objects is very convenient for the design of efficient
aslgorithms. That simplification is exclusively provided for the spatial index; the exaci deseription of

the shape should continye to be stered into the database. The most common simplification is based

simple description, and (i) good fit of the spatial objects to be considered. The most comrman ones
are sectangles [Guttman 1984], circles [Hinrichs 1985 or a conves bodies [Giinther 1989),

Cireemscription with a simple figure has twa advantages: (i) it reduces the storage needed for the
access method and (i) it simplifies and accelerates the processing of locational queries. It might,
however. include references to objects that do not satisfy the desired spatial predicate.

Enclosing the abjects within simple figures leads to the concepts of transformed spaces of higher
dimension. A rectangle, for example, is completely characterized by the pasition of two diagonally
npposad vertices, each described by two coordinates. Hence, any rectangle can he represented by four
numbers, and thus, rectangles can be considered as a pomit in a four dimensianal spaces. The coordinate
selection for that four-dimensional space is not upigue. Figure 1 illusirates three of those selections.
Fig. 1a) shows a set of line segments, and figures 1b), 1c) 1d) display three coordinate selections, that
use tespectively: i} The coordinates of two opposed verlices ii) The coordinates of one vertex together
with the extents of the tectangle along Lhe ordinate and the abscissa axis it} The coardinates of the

centroid. together with the half-extents of the rectangle along the ordinate and abscissa axis.

[°
C
™ O O D
A c
B _ - o o
_C D [
—_— — B0 O OA O p A
o 0,0 g
L L1 L i
a) Set ol segments b) Initial-tlinal ¢} Initial point- d) Cenler
point exient hall exlent

Fig. 1 A set of segments and diiferent represeniations

2.3 Types of Spatial Retrieval Methods

A brief review of existing spatial retrieval methods will be given, as a preamble to Lhe presentation af
the Fieldiree with the intention of relating its characteristics lo those of olher methods.

Spatial retrieval methods can be classifiod in several categories, according to;

32

Type of geometric data (point vs. region)

A spalial access provides a map from a multidimensianal originaf space to disk space. The access
methaod iz simpler if all spatial information refers to isolated points, since each can be assigned to
a unique position in disk. Ambiguity may arise, however, while dealing with region data, because
the mapping of an object from original lo disk space can yield several disk addresses. Thai causes

2 need for methods specially tailored te a particular type of gromatric data.

Handling of objects (non-fragmenting vs. fragmenting)

A spatial aecess method pravides a map from the object spatial characteristics to a page in disk: if
objects have non-zero dimensions, a fraction of them might be mapped into more than one page.
Twao alternatives foltow: either (i) divide the object {at least conceptually) so each fragment is
assigned to a unique page and increase memory size , or (i) mantain the integrity of the objects
and periorm extra disk accesses. The f*tree [Sellis 1987] is an example of the first allernative.

while the Rtree [Guttman 1984] exemplifies the second one.

Retrieval method (direct vs. hierarchical}

This classification takes into account the implementation of the mapping between original and
disk spaces and subdivides access methods into two categories: direct methods (such as the grid
file [Nievergelt 1984]), that implement this mapping as a function, and Air rerchicel methads
(such as the PR quadtree [Samet 1984]) that navigate through a data siruciure to obtain the
desired disk address.

Space subdivison (regular vs. data determined)

3

Both direct and hierarchical methods consider subdivisions of space. That subdivision can be
done in either of two fashions: {i) in a regular one, or (i) according to the object’s geometiy
and a criterion of minizing space usage and maximizing the speed of operations. Examales of
data determined vs regular hierarchical partition direct access methods are hd-tree and the PR

guadtree for hierarchical methods [Samet 1984] respectively

The Fieldtree

This section will present the characteristics of the Fieldtree and of the objects that can be placed into

it.

The Fieldtree is a data structure, initially developed at ETH Zurich [Frank 1883] and used in PANDA,

an object-oriznted database system [Frank 1982] It has been designed for its usage in Geographic

Information Systems. where the following circumstances prevail:

3.1

Point. line and area abjecis are coexistent.
Spatial nesting and partition of objects is common
Range queries are frequent

Spatial coverage among objects induce a lattice rather than a hierarchy.

Characterization of the Fieldtree

The Fieldiree provides » spatial access method that is:

a3

» Region-oriented, works in the original space.
» Noen-llagmenting.
e Hierarchical in nature,

s Based upon regular decomposition.

3.1.1 Original Space-Region Oriented

The Freldiree s a hreraschical organization of (not necessarily disjoint) regians, called fields, each one
associated lo a disk page. Il a disk page contains the data of an cbjzct. then the field associated to
that page musl cover the spatial extent component of the object. Qsganization in fields insures that

many of the neigborhoad relationships amang objects are preserved in disk space.

Field n)

N

Fiald m}
Fig. 2 Relationship between fields in original space
and pages in disk space

A minimal bounding rectangle, as those introduced in Section 2.2, is associated to each object to

{acilitate geometric manipulation of data.

3.1.2 Non-Fragmenting

All ol the data of'an abject is stored in a page associated with the field Lhat covers tihe spatial component
of the object, Fields are not necessarily mutually disjoint. If an object can be stored in several exisling

fields. additional rules are provided to allocate it to the one most suited to its type and size.

3.1.3 Regula: Decompasition

Space is decomposed inlo squares, each one of them being a field. Similarly 10 a guadtree, there can
exist several lerels of decomposition; the squares at a certain level are tegulatly spaced and have the
same extent, and the extents of the fields is typically halved {rom one level to the next. Two lacts must

ba stressed:

i) Fields of a certain level need not be mutually disjoint {i.e, they form a caver, athough nat
necessatily a partition)
i) A given level of decomposition nees not refine previous levels, i.e., a given field need not be

exactly described as a unian of fields at following levels.

34

Figure 3 shows two regular decompasitions ol space: {i) a partition and (ii) a covering. Dotted
lines represent the boundaries of the so-cafled "median subfield” | that is. the subfield spanned by the

medians of the centraids of the fields.

I N
O 0
@] O | ’ I b) A Square
— _—i__ — _} covering
| © | |© | O cenlroid
O O a) A Square — — median
partition e i

FIG 3 Two regular decompositions

3.1.4 Hierarchical organization

Fields at different levels of decomposition form.a Directed Acyclic Graph (DAG) rather than a hierarchy.
The descendants of 3 field T are all those at the next subdivision level that have their centroids spanned
by the median subfield of F. That hierarchy serves a dual purpose; (i) as a navigation device for access
to data, (i) and as a pathway for data migration when fields become filled.

Since suceessive levels of decomposition need not refine each ather, we are free to specily the relative
displacement among the centroids of different levels of decomposition. The criterion for that relstive
displacement is one thal avoids the placement of objects into fields far bigger than their size. Fig, 4.b)
4.d} show two different ane-dimensional equivalents of the Fieldtree; the trees’ fields are shown in 4.a),
4.c); those of 4.a) form a partition and the ones of 4.b) a cover. Section 4 will present two variations

of the Fieldiree: one involving partitions and the other covers.

a,b) Two levels of partilion

a) ; &) and the induced hierarchy

. 7S d) c,d) Two levels of covers
—) ﬁ and the induced hirrarchy

Fig. 4 Hierarchies induced by parlitions and caverings {1 dimensian)

3.2 Optimization of Object Allocation

Two topics will be treated here: how to use semantic jaformation 1o facilinate the retrieval and creation

operations of objects, and how to handle overllow after an insertien.

35

32.1 Semantic Information

Queries in a database specily & priori the object types to be retrieved, as shown in the following query
posed in a spatial SQL dialect [Egenhofer 1988a] that asks for the name of all cities in Maine and that

utilizes the object types cily and statn:

SELECT city.name
FROM city, state
WHERE state.name = "Maine" AND

city.geomeiry INSIDE state.geometry

The approximate size of cities is much bigger than the one of many other entities (e.g., farms}, and
will be necessarily placed in the levels of the Fieldtree where dields cover larger areas. If that information
is not available to the DBMS, an exhaustive and unnecessary search in the lower levels of the Fieldtres
wauld be performed. [t seems reasonable to atiach to each type an ‘importance’ attribute that indicates
the minimum size of a field where it can be placed, and thus limit the |evels of the tree to be searched

for objecis of this type.

322 Overflow Management

The insertion of a new object into the database involves locating the praper field of the tree, using
iformation both on the object data type and its size. Since a field has associated a certain data
capacity, if that capacity has already been reached, the inclusion of an extra object causes the creation
of one (or more) descendants of the field; all the objects from the original field that fit in the new field
{or fields) will be transferred to their new location. If ne object can migrate, the field disk storage is

extended with an overflow page.

4 Variants of the Fieldtree

This section presents two versions of the Fieldtree. Some results an the behavior of those variants are

presented in Section 6. and a more detailed presentation of those results can be found in [Barrera 1989}

4.1 The Partition Fieldtree

in this variant. in similasity to the PR quad-tree [Samet 1984], the fields constitute a partition of the
space. In oppasition to the PR tree, the centroids of the fields at the different levels of subdivision are
not symmetrically placed. If objects are to be stored unfragmented, the symmetric placement of the
centroids in the PR tree cavses those objects that intersect edges of the Fieldtree to be stored at nodes
of unnecessary lzrge extent {Fig 5). This problem has been circumvented by some authors [Abel 1984]
[Orenstein 1989] by allowing some controlled fragmentation in those cases. One of the design goals of
the fieldtiee was Lo avoid fragmentation.

The partition Fieldtree avoids Lhis prablem by shifting the positions of the centroids of one level with
tespect to thase of the previous one. A relative displacement of one half the exten: of a field in bath

coordinases guarantees that an object can be stored at most two levels above the lowest possible one

35

/—A

<] —avel (i)
level (i+1)
level (i+2)

Fig 5 Small objecis migh! be positioned
at large nodes in a quadiree
{based an its size only}. Even if all objects are of the same size, their x-y posilion vill determine

which of those three levels a particular object is placed and hence. the size of the receiving fiefd F
6 shows the relative arrangement of fields at diflerent levels.

A

151 level
2nd level
3d level

is! leve!l e |

2nd tevel — . ! I

Fig. 7 Wors! case silualions in the
Fig. 6 Two levels of the parition lree

partilion lree

Some peculiarities of the partition Fieldtree are:

eFields at different levels cannot have calfinear edges.

oA field can have up to nine descendants. Althaug field form a DAG, then dn not constilute a
tree in the strict sense of the word. Depending on their position, fields can have a masimum ol
1, 2 or 4 ancestors.

»Objects are intended to be placed into the field that fits them best. The worst fit involves placin
an object in a field 2" times its size: that sitvation is illustiated by the black squaie of Fig. 7

*An abject may be forced to descend two levels when a field splits (e.g. when it is placed in a
position such as the one marked with an A in Fig. 7)

Even if the partition Ficldiree forms seally a DAG, it can be implemented using that structure
selecting a spanning tree and Lreating the descendants of a lield as direct and mudireet children,
suggested by Banerjee el al. [Banerjee 1988]. A possible setection of the spanning t122 lo1 the o
dimensianal case is shown in Fig. 8. The use of a spanning tree has several advantages il enables 1

adoption of 3 Morton-type key for each field, thus allowing a physical implementation s a linear an
[Abel 1984]. It also provides a method for page clusteting.

a7

MMV II]\IIIIJ

b} A spanning iree

a) The Parition DAG
Fig. 8 A DAG fora 1-d partition

fieldiree and its spanning tree
! The Cover Fieldtree

ailar to the PR guad-tree [Samet 1984 this tree keeps the centroids of the diflerent space division
els symmetricilly aligned. In opposition 1o it, fields genesate a cover. not a partitian: if ¢, is the
tance along the coordinate amis beiween two consecutive centroids, adjacent fields overlap p x o,
ts along that axis (see fig. 10). Hierarchical segular covers of space have been used also in computer
jon [Burt 1081].

Fig. 9a) shows the arrangement of the fields at a given partition levels, Fig. 9.b) the arrangement

the centroids of two consecutive partitions.

I —] o © a O
- o O o o
Lo b —
1 . o O o
— 5 e | o o o O tevel (i)
| = del o | field tree ¢ © g o O level ({i+1)
L - | L . |J—— median '

© centroid b) Positioning of centroids
—~—pd —= at different lavels

) Space division in fields
FIG 9 FIELDS IN THE COVER FIELD TREE

When p < L:

«Each field has one main subfield, four sublields that it shares with either of its four direct neighbors

along, the coordinate axis, and faur subfields that it shares with two direct neigbhors and one

neighbor along a diagonal.
& field can have up to 4 descendants and only ane ancestor.

«Edges of diflerent fields at diflerent levels never coincide.

An overlap p > 0 between consecutive fields enables the slorage of any object of size pid. inside a

ield (see Fig. 10). Uniike the partition Fieldiree, it needs nat resort 1o several tree levels 1o store a set

ol objects of identical size; moreover, only immediate descendants need to be considered when a field

5 split.
A consequence for overlapping fields is that objects can be placed in mare than one field at a certain

evel of the tree. Thus, assignment rules must be provided. Same possible rules are:

38

Fields

hall
Exienl

0.5 pd

PANEVAN R
o i

FIG 10 FIT OF OBJECTS IN A 1-0 COVER FIELD TREE

Closest Centroid Assign 1o the field whase centroid is closest to that of the object’s tectangle
Clasest Corner Assign to the field whose SW (ar SE, ete.) corner is closest 1o the corresponting

corner of the ohject’s rectangle

hall half

Tields extenl Fields

AN AN

- cenlers cenler 5
#) Leil corner fit b) Center it

Fig 11 Locii of objects under different assignement rules

T he coverage of fields under different assignment rules for the one dimensional case ie shown i
Fig. 11, using transformed (center, half-extent) space. As yet the authors have not found & motive lor

prelerring among different rules.

5 Qperations on Fieldtrees

Having considered Lhe struclure of the Fieldiree, its storage and retrieval algonthms will now be dis-

cussed. Alterwards, an overview of the different program modules will be presented.

5.1 Storage Algorithm
Each object is always stored into the smallest possible field, i.e., an existing field that (ulfitis the rulee

Fit: The object lies completely within the boundaries of the field
Importance: The field extension is large enough for the importance of the object. The imporianae is

determined by the type of the ebject.

This teads to a (simplified) version of the algorithm:

1. Descend the tree while a smaller field exists that obeys both the fit and the impartance wles

2. Store the object into that smallest fietd.

The previous algorithm versian will never make the tree grow; to do so, rules for creating new lieids
must be added:

———

ag

o If the tree is emply. create the first and fargest figld: this field is the root of the tree.

« If the page on which to store the objeci has reaches 115 capacity. reoiganize the corresponding
field

Rearganization is a mechanism intended at distributing the contents of one field that is overfilled over
other (smaller) fields: if a field becomes saturaled, one ar more of its descendants must be created for the
reception of all the data they can hold according to the fit and importance rules, Rearganization takes
care both of the creation of a minimum of descendants 2nd of the transference of a maximum of data:
if no descendant can relieve a field of its sxcessive burden. an overflow page would be provided. Since
overflow pages presecve the logical organization of & Fieldiree, a lnzy reorganization can be included.
That procedure always uses overflow pages and marks the fields as a candidates for a thorough off-
line recrganization. Two courses of action can be taken during reorganization: either i) create all the
descendant pages. ar i) follaw a gresdy stratzgy and cr=ate only the one descendant field that relieves

the outfilled field most.

5.2 Retrieval

The recursive algorithm for retrieval has the following situcture:

1. tnitiahize: start with the ot of e Feldieo.

2. Test a feld (recursive)

While testing a field, if the field under consideration touches {ar includes, is contained, etc.) the guery

window and obeys the importance rules then:

« The objects of the field must be included in the znswer and

o All its existing subfields must be tested

6 Performance of the Fieldiree

This section presents in biief analytical sesults for the partition and the cover variants of the Fieldtree.
A more detailed description of those resulls can be found in [Barrera 1989).

For each of those variants. two melhods of implementing the hierarchy of the fieldtree are considered:

i) Including painters inside the fields. This implamentation will be refecred to as the puiuter one,
i} Providing the fields with a Morton code. and using a /1" tree 5o store pairs of (feld codr.

disk wddress). This implementation will be referred to as the wmallinny ane.

These results are compared 1o those obtained for the ftree and the J2¥tree by Faloutsos et al.

[1987]. Similatly to those authors:

« Objects are supposed ta reside in a one dimensional space. inside the interval (0. 1.0].
+ Both point and range quertes are considered
» The analysis considers abjects belonging to either one ot twa populations. Objects within

a population have a fixed size and are uniformily distnibuted tlnough space.

40

The same terminclogy of [Falcutsos 1987] will be used, namely:

' Maximum number of data items in a data leaf.
»w Total number of data items.
a Size ol a data item,

Fan-out of the tree { Rttree, Ntree or Bttree, depending on the context).

6.1 Coamparisons, one population case

This subsection presents analytical resufts for point facation and range queries. The performance in
hoth cases is measured by the number of page accesses needed.

Taken fram |Faloutsos 1987], a case with 2 population of 101, 0(H) abjects, a fan-out factor [of 50
and a field capacity €' of 50 objects was considered. All eesults are given for different values ol the

paremater @i/ (', that renders the fraction of the objects that overlap the edges of an [T+tree.

6.1.1 Point location Queries

Fig. 12 compares the performance of the parfition and the cover Fieldtres to that of the fi*tres and
the ftree. Only the multiway implementation of Lhe Fieldlree appeats in this figure, since lor this
particulas case is superior to that of the pointer implementation. Two extra cases are analyzed for the
partition Fieldtree: one that passes the objects that overilow a field 1o the field's ancestor and one thal

utilizes overflow buckets.

7 _| Padilion Iree, no overllow

8 —4
a - s
H 5 Partition res, averllow
d
(3]
) 4 Cover ires, A trea
e] // R+ tres

3 -

2 ————r———T—— =TT 7 "1 d hic

0,0 0.2 0.4 0.6 0.8 1.0

Fig 12 Comparison for 1-d Point Queries

From Fig. 12. it can be concluded that for the one-dimensional, one population case:

e The Cover Fieldtree and the fitree perform identically.
« The Cover Fieldiree outperforms bath variants of the partition Fieldtree. The variant of

the partition Fieldtree that provides overflow records outperforms its alternate varianl.

Furthes results in [Barrers 1989] show thal, for point localion queries, the superianty of the cover

variant aver the partition variant is presetved for the two-dimensional case.

4

6.1.2 Range Queries

Fig. 13 shows the average number of pages needed to access objects in 3 range query as a funclion
of the size of the guery window. Three sets of graphs are provided, corresponding 1o values of 70 /(" of
0.1, 0.3 and 0.5. The parameter o5/ is a measure of the overlap of objects: a value of [} carresponds
ta no overlap; a value of 1 completely disrupts the behavior of a 1-dimensional fi¥tree.

That figure shows that:

« For the one population Fieldtree case, implementation by multiway trees outperforms that
of potnters interior to the fields.

o ftrees snd Cover Fieldirees that use multiway indexes again behave identically, They outperform
all other variants.

» [?*trees are outperformed by partition Fieldtrees for high values of & /C

6.2 Results for two populations: Rtree vs. Cover Fieldtree

Faloutsos [1987] considers the case of a 1 dimensional [ftree with two populations of objects, The
number and the extension of the objects in each population are called (@,. 1), {74.11;). That reférence
also proves that in the case of two populations of objects one of them dominates, i.e.. all formulas are
the same as if they were from a single populatian with the dominant characteristics.

In the cover Fieldiree two situations can happen:

1. The importance of both types of objects is the same and, thus, thetr items are placed in
the same level of the Fieldtree, and. as in [Faloutsos 1987], one of the populations dominates.
2. The importance of both types of objects is different and they are placed in the different levels
of the Fieldtree.

Situation (2} is particularly attractive for range queries since then both populations become indepen-
dent: no coupling at all occurs for the case of a pointer implementation of the hierarchy, and very little
in the case of a an implementation by multiway trees. In this [ater case, the coupling can be greatly
diminished if the positional keys of the objects are ordered “by levels”, i.e., keys of fields a given level
of the Fieldtree preceding all those corresponding to descendant levels,

As an example of that let us consider the {oflowing case: suppose that (" and [are the same as

above, and the existance of two populations such that:

na=100, . 0y F = HP

Ay =16+am, . o /fC=02

I‘JH nwarfetnier - im J(Jl'fﬂ”f'i‘ '
! 1 2

The results of that example are illustrated in Fig. 14, In i1, a case where the cover Fieldtree shows
its superiority fon range queries is demonstrated: it also shows that the superiority of a multiway
implementation aver a painter one becomes less marked lor mixed populations. Examples can be

found, specially in the two dimensional case, where that supeniarity disappears.

42

¥ a
2.0 -] 5 (a)
1. A rre=, muliivay covet (teg
- 2-As lrea
o 3. Cover rea_pointers
2 \ a 4. Panitinn iea, mullisay
1 &- Fanilion 11ge, polnigrs
- 3
-4
t
1.0 - T T T = ' ag nfc=z01
o 2 4 B 8 10

% of objesls

!3 (b)

1. [rea mulliway cover hiee
2. Ns nege

a- Cover Irea, palniars

4. Marifizn ree, multtvay

5. Partilion lsee, polnlas

af acceszen

Ava,
- AWt M

g n'c=l]

% ul objecls

g—‘ 3 ‘E)

2.0+ 2

1. A ltee, midliway cover les
2-Aa ftes

3. Covet voe, polniers

4. Pariltian lrea, multiway

5. Pariillon tren, poiniers

., # of sccassas

/

1.0 . T T . . o nc=05
0 2 4 8 B 10
*% of abjectn

Fig 13 Comparison of Range Cuery Performance

7 Conclusions

The spatial access method presented here has the capability of clustering spatial objects according t
their type; this Teature is specially helpful in making the solution time of a query independant of h
contents of the database, while still using a single spatial access mechanism. In opposition to th
Rttree its performance does not degrade indefinitely as the objsct overlap increases. It diflers from th
Riree in the possibility of elliminating the population daminance ellect. It is thus especially well suite
for cases where data seis with many different types of spatial objects are stored. and queries refer t

objects from a particular data collection.

43

n
]
2
8 1-RAutaa
a 2- Covar ltes, pointers
Py
10 3- Cover Ires, mullivay
i ;
g 4- Cover tres, mulllway
g [mod address)
2
\‘—‘_; 3
T 4 g nic=0.1
o} —— T T —
0 2 4 B] 10

% of objecls

Fig 14 Average Number of Page Accesses, "GC" objecls

B8 Acknowledgements

The authars wish to thank Max Egenhofer and Douglas Hudson for their discussions and their sugges-

tions to improve this paper, and Jeff Jacksan for his help in the preparation of the graphs.

References

|Abel 1984] D. Abel and J. Smith. A Dala Structure and Query Algorithm Based on a Linear Key for
a Database of Areat Entities. The Australian Computer Journal, 16{4), November 1084,

[Banerjee 1988] J. Banerjee et al. Clustering a DAG for CAD Databases. |EEE Transactions on Software
Engineering, 14(11), November 1988.

[Barrera 1289] R. Barrera and A. Frank. Analysis and Comparison of the Performance of the Fieldtree.
Technical Report, Department of Surveying Engineering, University of Maine, Orano, ME.
March 1989.

{Burt 1881] P. Burt et al. Segmentation and Estimation of Image Region Praoperties through Coopera-
tive Hierarchical Computation, 1EEE Transactions on Systems, Man, and Cybernetics, 11(12),
December 1981,

[Egenhofer 108Ba| M. Egenhafer. A Spatial SQL Dialect. Technical Report, Department of Surveying
Engineering, University of Maine, Orono, ME, September 1988. submitled for publication.

[Egenhofer 1088b] M. Egenholer and A. Frank. Towards a Spatial Quesy Language: User Interface
Considerations. In: D. DeWitt and F. Bancilhan, editors, 14th International Cenlerence an

Very Large Data Bases, Los Angeles, CA, August 1388.

[Faloutsos 1987] Faloutsos et al. Analysis of Object-Oriented Spatial Access Methods. In: Proceedings
of SIGMOD Conference, May 1987.

a4

[Frank 1982] A. Frank. PANDA—A Fascal Network Database System. In: G.W. Gorsline, editor.
Praceedings of the Fifth Symposium on Small Systems, Colorado Springs. CO. 1982,

[Frank 1983] A. Frank. Problems of Rzalizing LIS: S1orage Methods for Space Related Dasa: The Field
Tree. Technical Report 71. Jnstitut for Geodesy and Photograrmnmetry. Swiss Federal Institute
of Technotogy (ETH), Zurick. Switzerland, 1983,

{Gonther 1989] O. Ginther. The Czll Tiee: An Object-Oriented Index Structure for Geometric
Databases. In: Proceedings IEEE Fifth International Conference on Data Engineering. Los
Angeles, CA, February 1989

[Guttman 1984] A, Guitman. R-Trees A Dynamic Index Structure for Spatial Searching. In: Proceed-
ings of the Annual Meeting ~Ci1 SIGMOD, Boston, MA, 1984,

|Hinsichs 198%] K. Hinsichs. The GF: File System: Implementation and Case Studies of Applications
(in German). PhD thesis, 5155 Federal Institute of Technology. Zurich. Switzerland, 1985,

[Kitsuregawa 1989] M. Kitsuregawa =: al. Join Strategies on KD-tree Indexed Relations. In: Proceed-
ings Fifth International Confzrence on Data Engineering. Los Angeles, CA. February 1985,

[Wievergelt 19B4] J. Mrevergelt et 2! ~=e GRID FILE: An Adaptable. Symmetric Multi-Key File Struc.
ture. ACM Transactions on Database Systems, 9(1), March 1984.

[Orenstein 1986] J. Orenstein. Spaial Query Processing in an Object-Oriented Database System.
ACM-SIGMOD. Internationzl Conference on Management of Data. 15(2), 1986.

[Orenstein 1989] J. Orenstein. Redundancy in Spatial Databases. ACM-SIGMOD, international Con-

ference on Management of Data, 1989,

[Samet 1984] H. Samet. The Quadi-ze and Related Mierarchical Data Structures. ACM Computing
Surveys, 16{2). June 1084

{Sellis 1987] T. Sellis €t al. The F--Tree: A Dynamic Index for Multi-Dimensional Objects. In:
P. Stocker and W. Kent, =ditors, 13th VLDB conference, Brighton. England, September
1987.

